Pathogenic Tau Causes a Toxic Depletion of Nuclear Calcium

14 Jul 2020

Pathogenic Tau Causes a Toxic Depletion of Nuclear Calcium.
Rebekah Mahoney, Elizabeth Ochoa Thomas, Paulino Ramirez, Henry E Miller, Adrian Beckmann, Gabrielle Zuniga, Radek Dobrowolski, Bess Frost.
Cell Reports. 2020 Jul 14;32(2):107900. doi: 10.1016/j.celrep.2020.107900.


Synaptic activity-induced calcium (Ca2+) influx and subsequent propagation into the nucleus is a major way in which synapses communicate with the nucleus to regulate transcriptional programs important for activity-dependent survival and memory formation. Nuclear Ca2+ shapes the transcriptome by regulating cyclic AMP (cAMP) response element-binding protein (CREB). Here, we utilize a Drosophila model of tauopathy and induced pluripotent stem cell (iPSC)-derived neurons from humans with Alzheimer’s disease to study the effects of pathogenic tau, a pathological hallmark of Alzheimer’s disease and related tauopathies, on nuclear Ca2+. We find that pathogenic tau depletes nuclear Ca2+ and CREB to drive neuronal death, that CREB-regulated genes are over-represented among differentially expressed genes in tau transgenic Drosophila, and that activation of big potassium (BK) channels elevates nuclear Ca2+ and suppresses tau-induced neurotoxicity. Our studies identify nuclear Ca2+ depletion as a mechanism contributing to tau-induced neurotoxicity, adding an important dimension to the calcium hypothesis of Alzheimer’s disease.